Correlation Analyses in R


Previously, we described the essentials of R programming and provided quick start guides for importing data into R. Additionally, we described how to compute descriptive or summary statistics using R software.


This chapter contains articles for computing and visualizing correlation analyses in R. Recall that, correlation analysis is used to investigate the association between two or more variables. A simple example, is to evaluate whether there is a link between maternal age and child’s weight at birth.


Correlation Test Between Two Variables in R

Brief outline:

  • What is correlation test?
  • Methods for correlation analyses
  • Correlation formula
    • Pearson correlation formula
    • Spearman correlation formula
    • Kendall correlation formula
  • Compute correlation in R
    • R functions
    • Import your data into R
    • Visualize your data using scatter plots
    • Preliminary test to check the test assumptions
    • Pearson correlation test
    • Kendall rank correlation test
    • Spearman rank correlation coefficient
  • Interpret correlation coefficient

Read more: —> Correlation Test Between Two Variables in R.

Correlation Matrix: Analyze, Format and Visualize

Correlation matrix is used to analyze the correlation between multiple variables at the same time.

Brief outline:

  • What is correlation matrix?
  • Compute correlation matrix in R
    • R functions
    • Compute correlation matrix
    • Correlation matrix with significance levels (p-value)
    • A simple function to format the correlation matrix
    • Visualize correlation matrix
      • Use symnum() function: Symbolic number coding
      • Use corrplot() function: Draw a correlogram
      • Use chart.Correlation(): Draw scatter plots
      • Use heatmap()
scatter plot, chart

scatter plot, chart

Read more: —> Correlation Matrix: Analyze, Format and Visualize.

Visualize Correlation Matrix using Correlogram

Correlogram is a graph of correlation matrix. Useful to highlight the most correlated variables in a data table. In this plot, correlation coefficients are colored according to the value. Correlation matrix can be also reordered according to the degree of association between variables.

Brief outline:

  • Install R corrplot package
  • Data for correlation analysis
  • Computing correlation matrix
  • Correlogram : Visualizing the correlation matrix
    • Visualization methods
    • Types of correlogram layout
    • Reordering the correlation matrix
    • Changing the color of the correlogram
    • Changing the color and the rotation of text labels
    • Combining correlogram with the significance test
    • Customize the correlogram
library(corrplot)
library(RColorBrewer)
M <-cor(mtcars)
corrplot(M, type="upper", order="hclust",
         col=brewer.pal(n=8, name="RdYlBu"))

Read more: —> Visualize Correlation Matrix using Correlogram.

Elegant Correlation Table using xtable R Package

The aim of this article is to show you how to get the lower and the upper triangular part of a correlation matrix. We will use also xtable R package to display a nice correlation table.

Brief outline:

  • Correlation matrix analysis
  • Lower and upper triangular part of a correlation matrix
  • Use xtable R package to display nice correlation table in html format
  • Combine matrix of correlation coefficients and significance levels

Elegant correlation table using xtable R package

Read more: —> Elegant correlation table using xtable R package.

Correlation Matrix : An R Function to Do All You Need

The goal of this article is to provide you a custom R function, named rquery.cormat(), for calculating and visualizing easily a correlation matrix in a single line R code.

Brief outline:

  • Computing the correlation matrix using rquery.cormat()
    • Upper triangle of the correlation matrix
    • Full correlation matrix
    • Change the colors of the correlogram
    • Draw a heatmap
  • Format the correlation table
  • Description of rquery.cormat() function
source("http://www.sthda.com/upload/rquery_cormat.r")
mydata <- mtcars[, c(1,3,4,5,6,7)]
require("corrplot")
rquery.cormat(mydata)
$r
        hp  disp    wt  qsec  mpg drat
hp       1                            
disp  0.79     1                      
wt    0.66  0.89     1                
qsec -0.71 -0.43 -0.17     1          
mpg  -0.78 -0.85 -0.87  0.42    1     
drat -0.45 -0.71 -0.71 0.091 0.68    1
$p
          hp    disp      wt  qsec     mpg drat
hp         0                                   
disp 7.1e-08       0                           
wt   4.1e-05 1.2e-11       0                   
qsec 5.8e-06   0.013    0.34     0             
mpg  1.8e-07 9.4e-10 1.3e-10 0.017       0     
drat    0.01 5.3e-06 4.8e-06  0.62 1.8e-05    0
$sym
     hp disp wt qsec mpg drat
hp   1                       
disp ,  1                    
wt   ,  +    1               
qsec ,  .       1            
mpg  ,  +    +  .    1       
drat .  ,    ,       ,   1   
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

Read more: —> Correlation Matrix : An R Function to Do All You Need.

Infos

This analysis has been performed using R statistical software (ver. 3.2.4).


Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!





This page has been seen 515182 times