Belle table de coefficients de corrélation en utilisant le package xtable de R

Introduction

Le calcul de la matrice de corr?lation est une analyse importante pour identifier des d?pendences entre des variables. Le calcul de la matrice de corr?lation et la visualisation par un corr?logramme est expliqu? ici. L?objectif de cet article est de vous montrer comment obtenir le triangle inf?rieur et sup?rieur de la table de corr?lation. Nous allons ?galement utiliser le package xtable de R pour mettre en forme et afficher une belle table de corr?lation.

Notez qu?un logiciel web est disponible ici pour calculer une matrice de corr?lation et dessiner un corr?logramme sans aucune installation.

Calcul de la matrice de corr?lation

Le code R suivant permet de calculer la matrice de corr?lation en utilisant la table de donn?es mtcars. Cliquez ici pour lire plus.

mcor<-round(cor(mtcars),2)
mcor
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
mpg   1.00 -0.85 -0.85 -0.78  0.68 -0.87  0.42  0.66  0.60  0.48 -0.55
cyl  -0.85  1.00  0.90  0.83 -0.70  0.78 -0.59 -0.81 -0.52 -0.49  0.53
disp -0.85  0.90  1.00  0.79 -0.71  0.89 -0.43 -0.71 -0.59 -0.56  0.39
hp   -0.78  0.83  0.79  1.00 -0.45  0.66 -0.71 -0.72 -0.24 -0.13  0.75
drat  0.68 -0.70 -0.71 -0.45  1.00 -0.71  0.09  0.44  0.71  0.70 -0.09
wt   -0.87  0.78  0.89  0.66 -0.71  1.00 -0.17 -0.55 -0.69 -0.58  0.43
qsec  0.42 -0.59 -0.43 -0.71  0.09 -0.17  1.00  0.74 -0.23 -0.21 -0.66
vs    0.66 -0.81 -0.71 -0.72  0.44 -0.55  0.74  1.00  0.17  0.21 -0.57
am    0.60 -0.52 -0.59 -0.24  0.71 -0.69 -0.23  0.17  1.00  0.79  0.06
gear  0.48 -0.49 -0.56 -0.13  0.70 -0.58 -0.21  0.21  0.79  1.00  0.27
carb -0.55  0.53  0.39  0.75 -0.09  0.43 -0.66 -0.57  0.06  0.27  1.00

Le r?sultat est une table des coefficients de corr?lation entre chaque variables et les autres.

Triangle inf?rieur et sup?rieur de la matrice de corr?lation

Pour obtenir le triangle inf?rieur ou sup?rieur de la matrice de corr?lation, la fonction R lower.tri() ou upper.tri() peut ?tre utilis?e. Le format des fonctions est :

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

- x : est la matrice de corr?lation - diag : si la valeur est TRUE, alors la diagonale n?est pas incluse dans le r?sultat.

Les deux fonctions ci-dessus, renvoie une matrice de type ?logique?, laquelle a la m?me taille que la matrice de corr?lation. La valeur des cases est ?gale TRUE dans le triangle inf?rieur ou sup?rieur:

upper.tri(mcor)
       [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9] [,10] [,11]
 [1,] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [2,] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [3,] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [4,] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [5,] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [6,] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [7,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [8,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [9,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
[10,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
[11,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# Cacher le triangle sup?rieur
upper<-mcor
upper[upper.tri(mcor)]<-""
upper<-as.data.frame(upper)
upper
       mpg   cyl  disp    hp  drat    wt  qsec    vs   am gear carb
mpg      1                                                         
cyl  -0.85     1                                                   
disp -0.85   0.9     1                                             
hp   -0.78  0.83  0.79     1                                       
drat  0.68  -0.7 -0.71 -0.45     1                                 
wt   -0.87  0.78  0.89  0.66 -0.71     1                           
qsec  0.42 -0.59 -0.43 -0.71  0.09 -0.17     1                     
vs    0.66 -0.81 -0.71 -0.72  0.44 -0.55  0.74     1               
am     0.6 -0.52 -0.59 -0.24  0.71 -0.69 -0.23  0.17    1          
gear  0.48 -0.49 -0.56 -0.13   0.7 -0.58 -0.21  0.21 0.79    1     
carb -0.55  0.53  0.39  0.75 -0.09  0.43 -0.66 -0.57 0.06 0.27    1
# Cacher le triangle inf?rieur
lower<-mcor
lower[lower.tri(mcor, diag=TRUE)]<-""
lower<-as.data.frame(lower)
lower
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
mpg      -0.85 -0.85 -0.78  0.68 -0.87  0.42  0.66   0.6  0.48 -0.55
cyl              0.9  0.83  -0.7  0.78 -0.59 -0.81 -0.52 -0.49  0.53
disp                  0.79 -0.71  0.89 -0.43 -0.71 -0.59 -0.56  0.39
hp                         -0.45  0.66 -0.71 -0.72 -0.24 -0.13  0.75
drat                             -0.71  0.09  0.44  0.71   0.7 -0.09
wt                                     -0.17 -0.55 -0.69 -0.58  0.43
qsec                                          0.74 -0.23 -0.21 -0.66
vs                                                  0.17  0.21 -0.57
am                                                        0.79  0.06
gear                                                            0.27
carb                                                                

Utiliser le package xtable de R pour afficher une belle table corr?lation au format html

library(xtable)
print(xtable(upper), type="html")
mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1
cyl -0.85 1
disp -0.85 0.9 1
hp -0.78 0.83 0.79 1
drat 0.68 -0.7 -0.71 -0.45 1
wt -0.87 0.78 0.89 0.66 -0.71 1
qsec 0.42 -0.59 -0.43 -0.71 0.09 -0.17 1
vs 0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74 1
am 0.6 -0.52 -0.59 -0.24 0.71 -0.69 -0.23 0.17 1
gear 0.48 -0.49 -0.56 -0.13 0.7 -0.58 -0.21 0.21 0.79 1
carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57 0.06 0.27 1

Combiner la matrice des coefficients de corr?lation et le niveau de significativit?

Une fonction personnalis? corstars() est utilis?e pour combiner les coefficients de corr?lation et le niveau de significativit?. Le code R de la fonction est fourni ? la fin de cet article. La fonction n?cessite deux packages :

corstars(mtcars[,1:7], result="html")
mpg cyl disp hp drat wt
mpg
cyl -0.85****
disp -0.85**** 0.90****
hp -0.78**** 0.83**** 0.79****
drat 0.68**** -0.70**** -0.71**** -0.45**
wt -0.87**** 0.78**** 0.89**** 0.66**** -0.71****
qsec 0.42* -0.59**** -0.43* -0.71**** 0.09 -0.17

p < .0001 ?****?; p < .001 ??, p < .01 ??, p < .05 ??

Le code R de la fonction corstars (Le code est adapt? ? partir de celui publi? sur ce forum et sur ce blog ):

# x is a matrix containing the data
# method : correlation method. "pearson"" or "spearman"" is supported
# removeTriangle : remove upper or lower triangle
# results :  if "html" or "latex"
  # the results will be displayed in html or latex format
corstars <-function(x, method=c("pearson", "spearman"), removeTriangle=c("upper", "lower"),
                     result=c("none", "html", "latex")){
    #Compute correlation matrix
    require(Hmisc)
    x <- as.matrix(x)
    correlation_matrix<-rcorr(x, type=method[1])
    R <- correlation_matrix$r # Matrix of correlation coeficients
    p <- correlation_matrix$P # Matrix of p-value 
    
    ## Define notions for significance levels; spacing is important.
    mystars <- ifelse(p < .001, "****", ifelse(p < .001, "*** ", ifelse(p < .01, "**  ", ifelse(p < .05, "*   ", "    "))))
    
    ## trunctuate the correlation matrix to two decimal
    R <- format(round(cbind(rep(-1.11, ncol(x)), R), 2))[,-1]
    
    ## build a new matrix that includes the correlations with their apropriate stars
    Rnew <- matrix(paste(R, mystars, sep=""), ncol=ncol(x))
    diag(Rnew) <- paste(diag(R), " ", sep="")
    rownames(Rnew) <- colnames(x)
    colnames(Rnew) <- paste(colnames(x), "", sep="")
    
    ## remove upper triangle of correlation matrix
    if(removeTriangle[1]=="upper"){
      Rnew <- as.matrix(Rnew)
      Rnew[upper.tri(Rnew, diag = TRUE)] <- ""
      Rnew <- as.data.frame(Rnew)
    }
    
    ## remove lower triangle of correlation matrix
    else if(removeTriangle[1]=="lower"){
      Rnew <- as.matrix(Rnew)
      Rnew[lower.tri(Rnew, diag = TRUE)] <- ""
      Rnew <- as.data.frame(Rnew)
    }
    
    ## remove last column and return the correlation matrix
    Rnew <- cbind(Rnew[1:length(Rnew)-1])
    if (result[1]=="none") return(Rnew)
    else{
      if(result[1]=="html") print(xtable(Rnew), type="html")
      else print(xtable(Rnew), type="latex") 
    }
} 

Conclusions

  • Utiliser la fonction cor() pour calculer la **matrice de corr?lation?.
  • Utiliser les fonctions lower.tri() et upper.tri() pour obtenir le triangle inf?rieur et sup?rieur de la matrice de corr?lation.
  • Utiliser la fonction xtable pour afficher une belle table de corr?lation au format latex ou html.

Infos

Cette analyse a ?t? faite avec R (ver. 3.1.0).

Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!





Cette page a été vue 4132 fois
Licence - Pas d?Utilisation Commerciale - Partage dans les M?mes Conditions
Licence Creative Commons